On Well-Edge-Dominated Graphs

نویسندگان

چکیده

A graph is said to be well-edge-dominated if all its minimal edge dominating sets are minimum. It known that every G also equimatchable, meaning maximal matching in maximum. In this paper, we show a connected, triangle-free, nonbipartite, graph, then one of three graphs. We characterize the split graphs and Cartesian products. particular, connected product $$G\Box H$$ well-edge-dominated, where H have order at least 2, only = K_2 \Box K_2$$ . prove two nontrivial it equimatchable.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Locally Well-Dominated and Locally Independent Well-Dominated Graphs

In this article we present characterizations of locally well-dominated graphs and locally independent well-dominated graphs, and a sufficient condition for a graph to be k-locally independent well-dominated. Using these results we show that the irredundance number, the domination number and the independent domination number can be computed in polynomial time within several classes of graphs, e....

متن کامل

On (Semi-) Edge-primality of Graphs

Let $G= (V,E)$ be a $(p,q)$-graph. A bijection $f: Eto{1,2,3,ldots,q }$ is called an edge-prime labeling if for each edge $uv$ in $E$, we have $GCD(f^+(u),f^+(v))=1$ where $f^+(u) = sum_{uwin E} f(uw)$. Moreover, a bijection $f: Eto{1,2,3,ldots,q }$ is called a semi-edge-prime labeling if for each edge $uv$ in $E$, we have $GCD(f^+(u),f^+(v))=1$ or $f^+(u)=f^+(v)$. A graph that admits an  ...

متن کامل

Well-dominated graphs without cycles of lengths 4 and 5

Let G be a graph. A set S of vertices in G dominates the graph if every vertex of G is either in S or a neighbor of a vertex in S. Finding a minimal cardinality set which dominates the graph is an NP-complete problem. The graph G is well-dominated if all its minimal dominating sets are of the same cardinality. The complexity status of recognizing well-dominated graphs is not known. We show that...

متن کامل

On Edge-colouring Indiierence Graphs on Edge-colouring Indiierence Graphs

Vizing's theorem states that the chromatic index 0 (G) of a graph G is either the maximum degree (G) or (G) + 1. A graph G is called overfull if jE(G)j > (G)bjV (G)j=2c. A suu-cient condition for 0 (G) = (G)+1 is that G contains an overfull subgraph H with (H) = (G). Plantholt proved that this condition is necessary for graphs with a universal vertex. In this paper, we conjecture that, for indi...

متن کامل

On the signed Roman edge k-domination in graphs

Let $kgeq 1$ be an integer, and $G=(V,E)$ be a finite and simplegraph. The closed neighborhood $N_G[e]$ of an edge $e$ in a graph$G$ is the set consisting of $e$ and all edges having a commonend-vertex with $e$. A signed Roman edge $k$-dominating function(SREkDF) on a graph $G$ is a function $f:E rightarrow{-1,1,2}$ satisfying the conditions that (i) for every edge $e$of $G$, $sum _{xin N[e]} f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Graphs and Combinatorics

سال: 2022

ISSN: ['1435-5914', '0911-0119']

DOI: https://doi.org/10.1007/s00373-022-02508-9